A blackbody of surface area 10 cm² is heated to 127°C and is suspended in a room at temperature 27°C. Calculate the initial rate of loss of heat from the body to the room.

For a blackbody at temperature T, rate of emission is $u = \sigma A T^{\vee}$ (- e = 1 for blackbody in eq. u = e $\sigma A T^{\vee}$)

Also, when kept in a moon at temperature To, rate

of absorption is $[u_0 = \sigma A T^{\vee}]$ Hence net nate of last of heat is $u - u_0 = \sigma A (T^{\vee} - T^{\vee})$

Here, $A = 10 \text{ cm}^2 = 10 \times 10^{-9} \text{ m}^2$ $T = 400 \text{ K}, \quad T_0 = 300 \text{ K}$ $U - 4_0 = \left(5.67 \times 10^{-8} \text{ Wm}^2 \text{ K}^{-9}\right) \left(10 \times 10^{-9} \text{ m}^2\right) \left(400 - (300)\right) \text{ K}^{9}$ $\left[400 - (300)\right]$